
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Pointers recap (1)

0

1

2

3 10

4

5

6

7

8

9

MemoryAddress

char Data = 10;

We have no control over

where the system stores

this

Data

Pointers recap (2)

0

1

2

3 10

4

5

6

7

8

9

MemoryAddress

char Data = 10;
char *pData;

Data

pData

No value assigned to

this pointer at the

moment

It could contain any

random data

Pointers recap (3)

0

1

2

3 10

4

5

6 NULL

7

8

9

MemoryAddress

char Data = 10;
char *pData = NULL;

Data

pData

This is much

safer!

Pointers recap (4)

0

1

2

3 10

4

5

6 3

7

8

9

MemoryAddress

char Data = 10;
char *pData = NULL;
pData = &Data;

Data

pData

Use & to get the

address of a variable

Pointers recap (5)

0

1

2

3 20

4

5

6 3

7

8

9

MemoryAddress

char Data = 10;
char *pData = NULL;
pData = &Data;
*pData = 20;

Data

pData

Pointer

dereferencing using

*

or ‘what pData is

pointing at’ = 20

Pointers recap (6)

0

1 20

2

3 20

4

5

6 3

7

8

9

MemoryAddress

char Data = 10;
char *pData = NULL;
pData = &Data;
*pData = 20;

char i = *pData;

Data

pData

i

i = ‘What pData is

pointing at’

Introduction

▪Today we will cover:

▪Chapter 16 – Dynamic memory allocation

▪Chapter 17 – Function programming (part 3)

▪Chapter 19 – Advanced data types in C

Start recording!!

Dynamic Memory Allocation

Chapter 16

Dynamic Arrays

Say we need an array of Floats

▪Do we know how big it will be ?

▪Do we go for a ‘largest possible’ solution ?

NO !

▪We waste memory

▪Our code may crash as our ‘guess’ may be too small

▪Passing the data in functions becomes time consuming

The Solution

Use a pointer and dynamically create the array as:

▪We can ensure we have enough memory free

▪We get exactly the right size array

▪We can free the memory up when it is finished with

▪We can pass all the data to analysis routines in one go

▪We can even save all the data to file in one go!

Basically, we are writing good, robust, memory efficient code!

Pointers: in practice (1)

There are four ‘steps’ in using a pointer when using it to allocate an
array

▪Create the pointer

▪Assign it a valid address in memory

▪Use the memory associated with the pointer

▪ Free up the memory

There is the 4th step when using pointers with arrays (mentioned earlier!).

Pointers: in practice (2)

Create the pointer

▪ This is done the same as if we were declaring a pointer for a single
variable

▪ It must be of the type we wish our array to be e.g.

int *a; // For an array of integers

float *XData; // For an array of floats

Dynamic Memory Allocation

Allocate the pointer…

This is where the process differs.

▪ Previously we assigned the address of an existing variable to a pointer

▪ Now, we wish to ask for a base memory address where we can start to store
values

There are two functions we can use for this

malloc

calloc

They are almost identical, often it is a mix of personal preference/code
requirements that will determine which is used

malloc

Allocates a block of memory (given in bytes) but does not initialise it

void *malloc(size_t size);
Prototype in alloc.h and stdlib.h

Inputs:
• Size in bytes of memory requested to be allocated

Returns:
• a pointer to the Newly allocated block, or
• NULL if not enough space exists for the new block.

Note: If size == 0, it returns NULL.

calloc

Allocates space for n items of size bytes each and initialises each item
to zero

void *calloc(size_t nitems, size_t size);

Prototypes in stdlib.h and alloc.h

Inputs:

• nitems: number of items to allocate memory for

• size: size, in bytes, of each item

Returns

• a pointer to the newly allocated block or

• NULL if not enough space exists.

free

Frees blocks allocated with
• malloc or

• calloc

Prototype is

void free (void *block);

Found in stdlib.h & alloc.h

Note:
• We must use this to return memory, it is NOT automatically done when
a function exits (only the pointer is released)

An Example (or 3)

We will create dynamically an integer array of size ‘n’

▪Fill it with the values 0 .. n

▪Display the values (backwards)

Free up the memory used

LC16\dynamic_1.c , LC16\dynamic_2.c , LC16\dynamic_3.c ,

A note on multidimensional arrays

Just as we can allocate memory for a 1D array, we can do the
same for 2D, 3D.. arrays.

▪ It is however somewhat complex

▪ It involves creating arrays of pointers

▪Even more asterisks

▪As such, we will not cover it now

Function Programming (Part 3)

Chapter 17

Passing arrays to functions (1)

In…

• Chapter 15: We saw how we can use a pointer to access
items of an existing array

• Chapter 16: We developed the skills to allocate memory for
an array (obtaining the base address to use)

Now

• Let us combine this with the knowledge on passing pointers
to functions (Chapter 14)

Passing arrays to functions (2)

We can pass an entire array to a function simply by passing its address

▪ In fact, this is what C does for us ☺ (try and stop it!).

In the function call, we just provide the array variable,

▪ e.g. if we had declared an array as int MyArray[1000];

Our function call would be of the form

MyFunction (MyArray);

Note: we could use: MyFunction (&MyArray[0]) if we really wanted to!

Passing pointers to arrays to functions

When defining the function, we need to declare the parameter appropriately

Assuming we are passing an array of integers, the ‘easiest’ (and most obvious when

reading code) is to declare the parameter as

int ArrayToReceive[] (the [] indicates an array without ‘fixing’ the size)

void MyFunction(int ArrayToReceive[]);

We could of course treat it as a pointer as it will be being passed a memory

address, e.g.

void MyFunction(int *ArrayToReceive);

Does the same thing but not so

obvious that it’s expecting an array

Using arrays passed to functions (1)

In the function we access the array (using any of the methods from

chapter 15), e.g.

ArrayToReceive[n]

*(ArrayToReceive+n)

Note:

▪ As a pointer has been passed, the original array is accessed

▪ NOT A COPY

▪ i.e. you can (say) populate an array in a function

▪ The function does not know how big the array is! (Be careful!)

Using arrays passed to functions (2)

We Will create an integer array of size ‘n’

• Pass the array to a function (very efficiently!)

• Populate the array

• Pass the array to another function

• Display a result

Then repeat with a dynamically allocated array.

In this case we must free up the memory used at the end

LC16\DynamicFunction.c

Advanced Data Types in C - Structures

Chapter 19

Structures

Collections of variables stored under one name

Usually a set of related information

e.g. Name and address

 Material properties

 A set of coordinates

Defining a Structure (1)

struct Struct_Name
{

variable definitions
};

keyword structure tag

Defining a Structure (2)

struct Struct_Name
{

variable definitions
};

structure type (used for

variable declaration)

Defining a Structure (3)

struct Struct_Name
{

variable definitions
};

structure type (used for

variable declaration)

Variables contained

in structure

Enclose variables in

brackets and don’t forget

the semicolon!

eg: struct Employee
{

int id, phone;
char Surname[40];
char Initials[5];

};

struct Struct_Name
{

variable definitions
};

structure type (used for

variable declaration)

Variables contained

in structure

Enclose variables in

brackets and don’t forget

the semicolon!

Structures

You can have any variable type within the structure definition

eg: struct Employee
{

int id, phone;
char Surname[40];
char Initials[5];
float Salary[12];
int Matrix[10][20];
int *LookUp;

};

Using your Structure : Part 1

To declare a variable using the type of structure defined use the
structure type specified (the keyword plus the tag)

struct Employee JoeBlogs;

For an array of structures:

struct Employee Employees[10];

For a pointer to a structure:

struct Employee *Employee1;

Using your Structure : Part 2

Use the ‘dot operator’ to access individual structure

variables:

StructureName.Element_Name

For example:
Name = Employees.Surname;
Wage = Employees.Salary[0];

Using your Structure : Part 3

Individual Structures of the same type can be set equal to each other

eg.
MyData[0] = MyData[4];

But not
NewData = MyData;

LC19\structure_1.c , LC19\structure_2.c , LC19\structure_3.c

Structures and Functions

Structures can be passed to functions as a parameter

 MyFunc(employee1)

Where the function declaration would be

 MyFunc(struct Employee employee)

Structure pointers

To change the data in the structure from within the function, pass a pointer

 MyFunc(&employee)

Then the function declaration would be

MyFunc(struct Employee *employee)

Members of a structure can be accessed via the pointer using ->

 employee->Surname = “Smith”

Or

 (*employee).Surname = “Smith”

which allow members of a structure in the calling function to be accessed

LC19\StructureFunc.c

Advanced Data Types in C – Enums, Const, Unions,
#define and Advanced Structures

Chapter 19

#define

When developing code, we aim to make it as readable and maintainable
as possible.

One way is to define text labels (e.g. M_PI) that we can use in our code

We do this using the compiler directive #define, e.g.

#define UP 1

#define DOWN 2

Make sure you don’t put a semicolon at the end of the line – it will create
problems when the compiler does the ‘find and replace’

#define ‘find and replace’

When we compile our code, the compiler does an initial ‘find and
replace’ of these so (assuming #define UP 1) so,

 if (i == UP) // easier for us to read

Becomes

 if (i == 1) // What is actually compiled

#define: A clever trick

#define Size 50
main()
{
 int Array[Size][Size];
 int iCols = Size;
 int iRows = Size;

While we do have to recompile code, this allows us to change the size of an array to match a
problem.

If we use ‘Size’ in loops etc. we know too we will stay inside the array bounds.

This is also a good way for changing parameters within an application (e.g. you might #define
a value for resistivity or permittivity which is then used in equations).

#define: A word of caution (1)

These need to be used with caution, one thing to note is DO NOT put a semicolon

on the end of a #define e.g.

 #define UP 1;

As

 if (i == UP) // easier for us to read

Becomes

 if (i == 1;) // What is actually going to be compiled

Which is an error and does not compile!

#define: A word of caution (2)

As this is a simple ‘find and replace’ the compiler cannot spot the following problem

(and is very hard for us to track down as it is not an ‘error’).

 #define UP 1

 #define DOWN 1

 if (i == UP)

 {
 // some code for ‘UP’
 }

 if (i == DOWN)

 {
 // some code for DOWN
 }

 #define UP 1

 #define DOWN 1

 if (i == 1)

 {
 // some code for ‘UP’
 }

 if (i == 1)

 {
 // some code for DOWN
 }

Written as Compiled as

Enumerated Types

This is a simple way of defining an integer type and setting unique,

incrementing values to them (in one go!)

 enum Enum_Name { types }

Eg

 enum Days { mon, tue, wed, thu, fri } ;

It also has the advantage that the numbers NEVER replicate – so avoiding

the previous problem.

Starting values for enum’s

By default, enum’s start at zero

 enum Days { mon, tue, wed, thu, fri }

So mon = 0, tue = 1 etc

But we can define a start value

 enum Days { mon=1, tue, wed, thu, fri }

So mon = 1, tue = 2 etc

C19\enum.c TestEncoder

Static Variables

A static variable is one that when defined in a function is not
destroyed when the function terminates.

It holds the value and can be accessed the next time the
function is called.

Often used to count the number of times a function is called.

C19\static.c

const variables

const is a keyword used to make the value of an identifier constant.

 const int X = 30;

Unlike #define, const is scope controlled

A const variable will have memory space allocated to it (but this may
be device/compiler dependent)

https://www.baldengineer.com/const-vs-define-when-do-you-them-
and-why.html

LC19\ConstHashDefine.c

https://www.baldengineer.com/const-vs-define-when-do-you-them-and-why.html
https://www.baldengineer.com/const-vs-define-when-do-you-them-and-why.html

Unions

A union is a set of variables that

▪Overlap

▪Start at the same place in memory

▪ They are defined in a similar fashion to structures

▪ They can be used to save memory

Unions – a graphical explanation

union number
{
 double d;

 float f;
 long l;
 int i;
 short s;
 unsigned char c[8];

};

The storage for each variable overlaps – in this case the char array is

defined to cover the whole range of bytes of memory used.

Note: sizes in bytes will be machine dependent

8
bytes

MotorControlSkeleton.ino

Advanced Structures

A C struct can have bit fields

▪ append a : and a number to an integer type

struct SmallNumbers
{
 unsigned int a:4;
 unsigned int b:4;
 unsigned int c:4;
 unsigned int d:4;
};

Bit Fields

struct SmallNumbers
{

unsigned int a:4;
 unsigned int b:4;
 unsigned int c:4;
 unsigned int d:4;
};

struct SmallNumbers has 4 members

• Each member has 4 bits

• The value each can take is defined

by the number of bits

• The structure is automatically made

the correct size

• Structure parts are independent of

each other

Another example of bitfields

struct Bits
{

unsigned char b0 : 1;
unsigned char b1 : 1;
unsigned char b2 : 1;
unsigned char b3 : 1;
unsigned char b4 : 1;
unsigned char b5 : 1;
unsigned char b6 : 1;

 unsigned char b7 : 1;
};

Assigning: struct Bits cByte = {0,1,1,0,1,1,1,1};

Or cByte.b0 = 0;
 cByte.b1 = 1;

We can also leave gaps

struct Bits
{

unsigned char t0 : 1;
unsigned char t1 : 1;
unsigned char f1 : 1;
unsigned char f2 : 1;
unsigned char : 2;
unsigned char b1 : 2;

};
struct Bits cByte = {0,1,1,0,3};

Note gap (padding)

We do not include assignments for the ‘gap’

What are they used for ?

Register settings, e.g.

▪Many devices use a single register to set a series of values

▪We could set/reset each bit but this would be very tedious

▪Better to set a structure and the we can control each bit without
affecting other bits

Eg. - a typical engineering case (1)

PBR1BR3 BR2 DB1DB2 SB1SB2

P: Parity (0=odd, 1 = even)

SB: Stop bits (0 bits,1 bit or 2 bits)

DB: Data bits (0=6 bits, 1=7 bits, 2 = 8 bit)

BR: Baudrate ([x+1] * 1200), x= 0..7

Serial port control register

Eg. - a typical engineering case (2)

PBR1BR3 BR2 DB1DB2 SB1SB2

P: Parity (0=odd, 1 = even)

DB: Data bits (0=6 bits, 1=7 bits, 2 = 8 bit)

SB: Stop bits (0=0 bits, 1=1 bit, 2=2 bits)

BR: Baudrate ([x+1] * 1200), x= 0..7

Serial port control register

To configure the port we would put zeros and ones in the relevant boxes and work out
the decimal (or hex) value and assign this to the register e.g. for 9600,8,1,E

111 1101 0 =243 (0xf3)
7=9600 2=8DB 1=1SB 1=E

Creating a structure to set register values

A bit field struct can help make this more manageable as we can separate items

struct RS232
{

unsigned char p : 1; // parity bit
unsigned char sb : 2; // stop bits
unsigned char db : 2; // data bits
unsigned char baud : 3; //baud rate

};

Assigning:

 struct RS232 serial = {1,1,2,7};

Or

 serial.p = 1;
 serial.sb = 1;
 serial.db = 2;
 serial.baud = 7;

Improving even further…

P: Parity #define parity_odd 0
 #define parity even 1

DB: Data bits #define data_bits_6 0
 #define data_bits_7 1
 #define data_bits_8 2

SB: Stop bits #define stop_bits_0 0
 #define stop_bits_1 1
 #define stop_bits_2 2

BR: Baudrate #define BAUD_1200 0
 #define BAUD_2400 1
 …..
 #define BAUD_9600 7

Note: For REALLY good code we can use #define to create constants for the various
parameters and use these in our code.

This makes it very easy to read and to update, consider our previous example…

Which is much easier to read

Giving

 Assigning:

 struct RS232 serial = {parity_odd, stop_bits_1 , data_bits_2, BAUD_9600};

 Or

 serial.p = parity_odd;
 serial.sb = stop_bits_1;
 serial.db = data_bits_2;
 serial.baud = BAUD_9600;

Instead of

 Assigning:

 struct RS232 serial = {1,1,2,7};
 Or

 serial.p = 1;
 serial.sb = 1; etc.

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Pointers recap (1)
	Slide 3: Pointers recap (2)
	Slide 4: Pointers recap (3)
	Slide 5: Pointers recap (4)
	Slide 6: Pointers recap (5)
	Slide 7: Pointers recap (6)
	Slide 8: Introduction
	Slide 9: Chapter 16
	Slide 10: Dynamic Arrays
	Slide 11: The Solution
	Slide 12: Pointers: in practice (1)
	Slide 13: Pointers: in practice (2)
	Slide 14: Dynamic Memory Allocation
	Slide 15: malloc
	Slide 16: calloc
	Slide 17: free
	Slide 18: An Example (or 3)
	Slide 19: A note on multidimensional arrays
	Slide 20: Chapter 17
	Slide 21: Passing arrays to functions (1)
	Slide 22: Passing arrays to functions (2)
	Slide 23: Passing pointers to arrays to functions
	Slide 24: Using arrays passed to functions (1)
	Slide 25: Using arrays passed to functions (2)
	Slide 26: Chapter 19
	Slide 27: Structures
	Slide 28: Defining a Structure (1)
	Slide 29: Defining a Structure (2)
	Slide 30: Defining a Structure (3)
	Slide 31
	Slide 32: Structures
	Slide 33: Using your Structure : Part 1
	Slide 34: Using your Structure : Part 2
	Slide 35: Using your Structure : Part 3
	Slide 36: Structures and Functions
	Slide 37: Structure pointers
	Slide 38: Chapter 19
	Slide 39: #define
	Slide 40: #define ‘find and replace’
	Slide 41: #define: A clever trick
	Slide 42: #define: A word of caution (1)
	Slide 43: #define: A word of caution (2)
	Slide 44: Enumerated Types
	Slide 45: Starting values for enum’s
	Slide 46: Static Variables
	Slide 47: const variables
	Slide 48: Unions
	Slide 49: Unions – a graphical explanation
	Slide 50: Advanced Structures
	Slide 51: Bit Fields
	Slide 52: Another example of bitfields
	Slide 53: We can also leave gaps
	Slide 54: What are they used for ?
	Slide 55: Eg. - a typical engineering case (1)
	Slide 56: Eg. - a typical engineering case (2)
	Slide 57: Creating a structure to set register values
	Slide 58: Improving even further…
	Slide 59: Which is much easier to read

